Modulation of cardiac Ca(V)1.2 channels by dihydropyridine and phosphatase inhibitor requires Ser-1142 in the domain III pore loop.

نویسندگان

  • Christian Erxleben
  • Claudio Gomez-Alegria
  • Thomas Darden
  • Yasuo Mori
  • Lutz Birnbaumer
  • David L Armstrong
چکیده

Dihydropyridine-sensitive, voltage-activated calcium channels respond to membrane depolarization with two distinct modes of activity: short bursts of very short openings (mode 1) or repetitive openings of much longer duration (mode 2). Here we show that both the dihydropyridine, BayK8644 (BayK), and the inhibitor of SerThr protein phosphatases, okadaic acid, have identical effects on the gating of the recombinant cardiac calcium channel, Ca(V)1.2 (alpha(1)C). Each produced identical mode 2 gating in cell-attached patches, and each prevented rundown of channel activity when the membrane patch was excised into ATP-free solutions. These effects required Ser or Thr at position 1142 in the domain III pore loop between transmembrane segments S5 and S6, where dihydropyridines bind to the channel. Mutation of Ser-1142 to Ala or Cys produced channels with very low activity that could not be modulated by either BayK or okadaic acid. A molecular model of Ca(V)1.2 indicates that Ser-1142 is unlikely to be phosphorylated, and thus we conclude that BayK binding stabilizes mode 2 gating allosterically by either protecting a phospho Ser/Thr on the alpha(1)C subunit or mimicking phosphorylation at that site.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cav1.3 is preferentially coupled to glucose-induced [Ca2+]i oscillations in the pancreatic beta cell line INS-1.

The link between Ca(2+) influx through the L-type calcium channels Ca(v)1.2 or Ca(v)1.3 and glucose- or KCl-induced [Ca(2+)](i) mobilization in INS-1 cells was assessed using the calcium indicator indo-1. Cells responded to 18 mM glucose or 50 mM KCl stimulation with different patterns in [Ca(2+)](i) increases, although both were inhibited by 10 microM nifedipine. Although KCl elicited a prolon...

متن کامل

Increased intracellular magnesium attenuates β-adrenergic stimulation of the cardiac CaV1.2 channel

Increases in intracellular Mg(2+) (Mg(2+)(i)), as observed in transient cardiac ischemia, decrease L-type Ca(2+) current of mammalian ventricular myocytes (VMs). However, cardiac ischemia is associated with an increase in sympathetic tone, which could stimulate L-type Ca(2+) current. Therefore, the effect of Mg(2+)(i) on L-type Ca(2+) current in the context of increased sympathetic tone was unc...

متن کامل

AKAP79 modulation of L-type channels involves disruption of intramolecular interactions in the CaV1.2 subunit.

L-type voltage gated calcium channels (VGCCs) interact with a variety of proteins that modulate both their function and localization. A-Kinase Anchoring Proteins (AKAPs) facilitate L-type calcium channel phosphorylation through β adrenergic stimulation. Our previous work indicated a role of neuronal AKAP79/150 in the membrane targeting of Ca(V)1.2 L-type calcium channels, which involved a proli...

متن کامل

PKA and phosphatases attached to the Ca(V)1.2 channel regulate channel activity in cell-free patches.

Calmodulin (CaM) + ATP can reprime voltage-gated L-type Ca(2+) channels (Ca(V)1.2) in inside-out patches for activation, but this effect decreases time dependently. This suggests that the Ca(V)1.2 channel activity is regulated by additional cytoplasmic factors. To test this hypothesis, we examined the role of cAMP-dependent protein kinase A (PKA) and protein phosphatases in the regulation of Ca...

متن کامل

Localization of cardiac L-type Ca(2+) channels to a caveolar macromolecular signaling complex is required for beta(2)-adrenergic regulation.

L-type Ca(2+) channels play a critical role in regulating Ca(2+)-dependent signaling in cardiac myocytes, including excitation-contraction coupling; however, the subcellular localization of cardiac L-type Ca(2+) channels and their regulation are incompletely understood. Caveolae are specialized microdomains of the plasmalemma rich in signaling molecules and supported by the structural protein c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 5  شماره 

صفحات  -

تاریخ انتشار 2003